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This paper represents a first attempt to discuss the growth of groups of cavities in an 
isotropic polystyrene-like solid. Calculations are made on a two-dimensional array of 
cylindrical voids in a sheet of uniform thickness. Stresses and displacements throughout 
the solid are obtained by use of the finite element method for both uniaxial and biaxial 
loading conditions. Elastic perfectly-plastic and strain-softening-hardening material laws 
are considered. It is shown how groups of voids are much more easily formed than single 
separate voids. For a strain-softening-hardening constitutive law a craze formation 
mechanism is proposed and its stability examined. 

1. Introduction 
When an organic glass is subjected to a suitable 
level of  stress, having a net hydrostatic tension 
[1], structures containing voids are formed and 
these are known as crazes. From the experi- 
mental point of view these processes have been 
extensively documented over the last 10 years. 
For  example, Kambour  [2] demonstrated the 
presence of very small rounded holes in a poly- 
carbonate craze and then went on to demon- 
strate that cracking takes place by the splitting 
of  a craze which is formed continuously at a 
crack tip [3]. More recently, evidence for 
expanded void structures has been found in 
fracture surfaces [4, 5] and electron micrographs 
have demonstrated craze structures in a wide 
range of glassy polymers [6-8]. 

Generally, these crazes start f rom the surface 
of  a polymer where the existence of a stress- 
raising flaw or crack may be assumed. However, 
it has now been shown that this process can also 
take place internally within the body of a pure 
isotropic polymer glass [1, 9] and that this 
process can occur at stresses well below the yield 
stress of  the polymer. Since the formation of 
voids must itself be a yield process the reason for 
this situation is not obvious. 

Two approaches have been made to the solu- 
tion of this problem. According to Gent [10] the 
glass transition temperature and the yield stress 
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of the polymer are lowered by the occurrence of a 
hydrostatic tension in the polymer or at the tip 
of  a crack. The difficulty with this proposal is 
that it appears to offer an alternative to the 
experimentally determined relation between yield 
stress and three-dimensional stress systems 
[1, 9, 11 ], which are not themselves adequate to 
predict the growth of a void in an isotropic solid 
[12]. The second approach suggests that voiding 
takes place only because the voids are produced 
in sheets or clusters. In this way, the formation of 
voids is made easier because the plastic yielding 
which takes place in the sphere surrounding a 
growing void is facilitated by similar yielding 
generated by the expansion of neighbouring 
voids [13]. This theory gains experimental 
support f rom morphological studies of fracture, 
which show that voids are indeed produced in 
groups but it suffers from a difficulty in making 
quantitative predictions. This paper represents a 
first attempt to discuss the growth of groups of 
cavities in an isotropic polystyrene-like solid. 

2. Method of calculat ion 
As it did not seem to be feasible at this stage to 
make calculations on a system of spherical voids 
in three dimensions, it was decided to simplify the 
problem by using a two-dimensional array of 
cylindrical voids in a sheet of unit thickness as 
shown in Fig. 1. 

�9 1973 Chapman and Hall Ltd. 
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Figure 1 The two-dimensional  cylindrical void model .  

To this sheet two types of stress system were 
applied, namely 1. unidirectional tension, 2. two 
dimensional hydrostatic tension. In each case the 
plane strain constraint was imposed that the 
thickness should remain constant and deforma- 
tion would take place solely by the enlargement 
of the initially cylindrical holes. 

The method of solution employed was the 
finite element technique, which is a generaliza- 
tion of the stiffness method of structural analysis. 
Its basis lies in the subdivision of the structure 
into a discrete number of finite sized elements (as 
seen in Fig. 2) in each of which an assumed 
variation of the unknown quantities (usually dis- 
placements) is postulated. Continuity of the 
unknowns across interelement boundaries is 
invoked at only a finite number of points termed 
nodal points. 

The method has the great advantage of being 
able to accommodate discontinuities and irregu- 
larities in material properties and geometry with 
ease and at present is probably the only feasible 
general method of solution of structures com- 
posed of materials with non-linear deformation 
characteristics. The finite element method is 
adequately explained in [14] and the details of its 
extension to the realm of non-linear material 
behaviour are to be found in [15-18]. 

Recent advances in both equation solution 
algorithms and individual element character- 
istics have resulted in the development of an 
economical computer program for the solution 
of elasto-plastic problems [16, 17]. Either small 
or large displacement problems can be accommo- 
dated subject to the restriction of small strains. 
The program, employing the isoparametric 
element concept, can readily incorporate any 
yield criterion for isotropic materials obeying the 

i / ' / /  L7/ 
/ j/ d 

/ 
/' / 

// 
I / 

/ I - /  

Figure 2 Typical finite element mesh of  i soparametr ic  
elements.  

normality rule of plasticity with isotropic and/or 
kinematic hardening properties. A general 
purpose solution algorithm is included from 
which three options are available depending on 
the type of problem to be solved. Each method is 
based on the satisfaction of equilibrium by the 
redistribution of residual forces. 

For the present study, the Von Mises yield 
criterion was adopted, the input information 
required being the elastic modulus, E, Poisson's 
ratio, v, and the initial yield stress, cry, of the 
material. The material behaviour after initial 
yield is determined by the effective stress versus 
effective plastic strain characteristic which, for 
the purpose of the numerical analysis, is pres- 
cribed in a piecewise linear manner. 

The output quantities are displacements, 
stresses and strains at each nodal point as well as 
stresses and strains at several selected points 
(Gaussianintegration points) within each element. 

Owing to the fact that all models investigated 
contained a regular array of holes, it was possible 
to invoke symmetry to analyse only a single 
period or module of the model as indicated in 
Fig. 1. A typical finite element subdivision 
employed is shown in Fig. 2. 

3. The  selection of material constants 
The first calculations were carried out using a 
model showing simple plasticity and having the 
material constants used in a previous paper [12], 
i.e., Young's modulus E = 4.2 • 10 3 MN m-2; 
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Poisson's ratio v = 0.33; Gy yield strength in 
tension or compression without change in 
volume = 105 M N  m -2. 

It was assumed that yielding is governed by the 
Von Mises yield criterion. This was of course a 
significant simplification of the actual behaviour 
of  a polymer. For example, the effects due to 
different strain-rates were omitted and so were 
the frictional factors which are known to cause 
small differences between the yield stress in 
tension and compression for polystyrene [1, 9, 
11 ]. However, since the work was directed to the 
elucidation of certain geometrical factors it was 
felt that these simplifications were acceptable. A 
much more serious limitation was thought to lie 
in the omission of both strain softening and 
orientation hardening effects. These are import- 
ant since high deformations are an essential part  
of  the processes under study. An attempt was 
made, therefore, in a second series of calculations 
to introduce a stress-strain relationship incorpor- 
ating these factors. 

For  this purpose a basic stress-strain curve was 
derived from the compression curves published 
by Binder and Muller [19]. This gave very little 
difficulty as far as moderate strains were 
concerned but there is at present no adequate 
way in which the behaviour at the highest 
strains can be defined. Binder and Muller's 
results were affected by the fact that their test 
piece cracked at high compressive strains. 
Eventually, a vertical ordinate was assumed at 
the high strain end of the curve to provide a 
limiting plastic strain. Fortunately, however, 
none of the elementary units in our model 
reached a strain large enough for this limiting 
strain to affect the results. 

Another very important difficulty which arises 
when an orientation hardening function is 
introduced into any plasticity model concerns 
that of the way in which it operates under 
different types of  strain. Very little is known 
about this type of behaviour though SOlne 
measurements on cellulose nitrate suggest that 
the most relevant feature may be the maximum 
tensile strain [20]. This was shown by the 
extension of a sheet material under biaxial and 
uniaxial tension whereupon it was found that the 
orientation hardening related much more closely 
to the maximum tensile strain than to the thick- 
ness strain. These results were analogous to those 
given by rubber [21]. 

This means that the equation for plastic strain 
becomes 
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stress = KF(~) 
where E is the maximum tensile strain. Since 
Binder and Muller's results were measured in 
compression, the relevant values of e for tension 
are given by 

= ~ 0 = 1 +  e 

where h, h0 refers to the change in height during 
compression, l, l 0 to change in length in tension 
and e is the plastic extension. Thus the assumed 
relation between the work hardening curves for 
tension and compression are as given in Fig. 3. 
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Figure 3 Material properties of the two-dimensional 
cylindrical void model. (a) Elastic-perfectly plastic 
(model I). (b) Strain-softening-hardening (model II). 

4. Simple plastic strain model 
This model did not contain an orientation 
hardening factor. It was studied in uniaxial and 
biaxial tension using the four standard values of 
the ratio d/a (Fig. 1) which were employed 
throughout these studies and which include the 
volume fractions known to be of interest for 
polymer craze structures (0.40 to 0.50 voids) 
[22]. 
Condition d/a Volume fraction 

of holes 
I 0.1 0.64 
I I  0.5 0.35 
I I I  1.0 0.19 
IV 2.0 0.087 
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Figure 4 Mean stress-mean strain characteristics for an elastic-perfectly plastic material subjected to two loading 
conditions. (Mean stress = [total force/unit thickness along edge]/edge length.) (a) Biaxial tension. (b) Uniaxial 
tension (fixed edge). 

Under  these conditions both  the systems have a 
relatively simple response. The stress-strain 
curve (Fig. 4) is relatively linear until plastic 
yield sets in, at which point  yielding occurs and 
the whole system collapses. This collapse 
behaviour which occurs at a stress of  41 M N  m -2 
for a 40% volume fraction of  voids, compared  
with an assumed yield stress of  105 M N  m -2, 
shows that  structures of  the type assumed will 
indeed yield or fail at stresses well below that  
required for  bulk polymer. Naturally,  the 
collapse stress will depend on the volume fraction 

o f  voids for each stress system. These results are 
shown in Fig. 5. In drawing these curves we have 
assumed that  at zero volume fraction the 
appropriate  "collapse stress" is that  required to 
enlarge a cylinder in an infinite volume o f  
polymer as provided by Hill's formula  [23]. The 
significance of  the results will be discussed later. 

5. T h e  use of a s t r a i n - s o f t e n i n g ,  
o r i e n t a t i o n  h a r d e n i n g  m o d e l  

Similar calculations were then made using a 
stress-strain curve of  the type shown in Fig. 3, 
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Figure 5 Collapse stresses for various void ratios and 
loading conditions (elastic-perfectly plastic material). 

showing strain softening at intermediate strains 
and orientation hardening at high strains. 

Examples of curves calculated in this way for 
the two highest cavity volumes are given in Fig. 6 
for uniaxial and biaxial tension (condition II) 
and for biaxial tension (condition I). Fig. 7 
shows the corresponding spread of plastic zones 
with increasing load. The load deformation 
behaviour for the condition I model has been 
extended to very high strains in an approximate 
manner by utilizing the fact that plastic straining 
is confined to the region of minimum cross- 
sectional area of the model as is evident from 

Fig. 7. This yielded area is marked ABCD in 
Fig. 7a. Therefore, the plastic deformation of the 
model can be approximated to by considering the 
yielding of a bar under uniaxial loading and 
subjected to the same plane strain condition as 
the model. This calculation is simple and was 
used to extend the load/deformation character- 
istic for the condition I model beyond the limit 
set by the computer program. The results justify 
two conclusions. 1. Where strain softening occurs 
in the tensile and compression curves, a strain 
softening feature is also seen in the cavity model. 
2. Where orientation hardening occurs in tension 
or compression this will ultimately be observed 
in the cavity model too. This conclusion has a 
high degree of probability for all cavity volumes, 
although it could be calculated, and then only 
approximately in the case where the volume 
fraction of voids was highest (condition I). 

6. C h a n g e s  in t h e  s h a p e  of  t h e  v o i d s  
In all cases, the voids were initially assumed to 
have a circular cross-section. In all cases the 
circular form becomes distorted as the system is 
strained. With the simple plastic strain model a 
smooth distortion of the cylinders takes place in 
uniaxial tension and also in biaxial tension as 
shown in Fig. 8a and b. On the other hand, the 
incorporation of strain softening into the 
constitutive law leads to neck formation and to a 
localized distribution of plastic strain as shown in 
Fig. 8c and d. In each case, however, the 
cylinders become elongated under the action of a 
unidirectional stress. The nature of this distortion 
is roughly equivalent to that which appears to 
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Figure 6 Mean stress--mean strain characteristics for a strain-softening-hardening material. 
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Figure 7 Development of plastic zones for an elastic-perfectly plastic material. 

take place in some polystyrene crazes. See Fig. 
9. 

7. D i s c u s s i o n  
For several reasons, the calculations just 
described can only be generally indicative of the 
stresses which occur during the growth of a craze- 
like structure in a glassy polymer. In the first 
place the model is only two-dimensional and 
based on cylindrical cavities, whereas the actual 
craze has cavities which may start as spheres and 
extend in three dimensions. There is also no fully 
satisfactory way in which the model can be used 
to calculate the stresses in a system of voids 
which grow from initially very small volumes. 
Surface tension effects are also omitted, though 
these would help to develop and retain a 
circular cross section in the smaller sized holes; 
their inclusion would, of course, also somewhat 
increase the work required to form a craze. 

If  we consider first the results from the first 
model showing simple plasticity, we find that the 
calculations lead in each case to a calculated 
collapse stress at which the structure would 
yield. If  we now go on to assume that a craze 
would grow to a void content of 0.40 or 0.50 [22] 
if the stress applied were equal to the average 
collapse stress over the range of void volumes 
(Fig. 10), then we find from Fig. 5, that with 
uniaxial tension and a fixed edge these averages 
come out as shown. 

Void volume fraction 
of finished "craze" 0.40 0.50 
Average stress to form 
"craze" 98 85 MN m -2 

and this compares with a yield stress of 105 
MN m -2 i.e., in each case the stress to form the 
craze is below the yield stress (as required). 
Further, at a void content of 40 %, the collapse 
stress is found to be 41 MN m -2 which is 
(probably somewhat coincidentally) close to the 
fracture stress of polystyrene [24]. This shows 
that the concept that the growth of a group of  
voids happens much more easily than with single 
voids is a viable one in the context. 

On the other hand, it is clear that with a 
material having only simple plasticity, no craze 
could exhibit any degree of stability. As the 
volume fraction of holes increases the stress 
required to enlarge them decreases, and hence, 
once started a craze-like structure would proceed 
catastrophically to fracture. 

At this point the second calculation may be 
considered. Here there are similar effects due to 
the volume fraction of holes, but it can also be 
shown that strain-softening will cause a reduc- 
tion in stress in the early stages of the yield 
process. The same model, however, also strongly 
predicts, that at later stages, orientation harden- 
ing, if shown by the polymer, will cause an 
increase in the stress necessary for further 
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growth, and so could stabilize a craze as indi- 
cated in Fig. 11. Here the existence of a region 
of the craze where voiding and strain softening 
had taken place would lead to local yielding and 
void expansion up to a point where orientation 
hardening stabilized the craze. Yielding in the 
partly expanded part  of the craze would then 
lead to higher stresses at the craze tip which would 
allow it to propagate. This whole argument is 
closely analogous to that describing the forma- 
tion of a stable neck during a tensile test [25]. 

The treatment proposed in this paper is of 
limited application and can provide only a part  
of  the explanation of craze initiation. Apart  f rom 
the limitations implied by the use of a cylindrical 
model instead of an assembly of spherical voids, 
which will introduce some quantitative differ- 
ences but probably does not affect the form of 
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the results, the problem of the formation of the 
first void remains. Some process to achieve this 
step still appears to be necessary to initiate a 
process of  "overlapping proliferation" as des- 
cribed here. 

This difficulty arises mainly in the case of  the 
initiation of internal crazes in isotropic polymers. 
At the surface it is likely that there will be suf- 
ficient irregularities present to initiate local 
yielding at average bulk stresses below the yield 
stress. Such local yielding will generate a surface 
depression and when this has reached the point 
where orientation hardening sets in the material 
just behind it will be in a strain-softened con- 
dition. Here groups of voids can be formed 
whose plastic zones may in fact overlap with the 
surface as well as each other. These can propa- 
gate in the manner already described. 
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However,  it is clear f rom the electron micro- 
graphs [7, 8] that  the initial voids can be very 
small, perhaps less than 5 nm diameter, corres- 
ponding to a volume of  some 50 nm 3. This is less 
than the volume occupied by a polymer  molecule 
o f  mol wt 100000 and not  much more  than the 
volumes o f  moving segments which may be 
derived f rom the application o f  the Eyring 
equat ion (3 to 20 nm ~) to yield phenomena  in 
polymers [26]. 

Very little is known in general about  processes 

UNIFORM APPLIED STRESS 

II1!IItIiI!II 
RIGID POLYMER 

• FINAL VOID 
CONTENT 

ASSUMED SMALL 

Figure t0 The growth of acylindrical void assembly in a 
rigid but perfectly plastic material. Voids assumed to re- 
main spherical. 

on this scale. In the first place, it is not  at all 
clear that  the values o f  yield stress obtained f rom 
macroscopic  experiments actually apply. Second- 
ly, it is probable  that  irregularities of  structure 
(or flaws or impurities) will exist on this scale in a 
normally clear and orientation free organic glass. 
Finally, changes in this range may be affected by 

Figure 9 (a) Transmission electron micrograph of the end of a craze formed in a thin section of polystyrene. 
Photograph by Beahan et al [8 ]. (b) One half of a craze in homopolystyrene impregnated with iodine-sulphur eutectic. 
Crack initiation thought to have occurred to the left of left edge of photograph. Craze propagated left to right and 
top to bottom. Note progressive coarsening of structure. Photograph by Kambour and Russell [7]. 
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Figure 11 Craze with orientation hardening and strain 
softening. 

e n e r g y  f l u c t u a t i o n s  n o t  d i f f e ren t  in  p r i n c i p l e  f r o m  
t h o s e  w h i c h  a re  a s s u m e d  to  c a u s e  c h e m i c a l  
r e a c t i o n s  w h i c h  m u s t  i n v o l v e  c h a n g e s  o n  a scale  
o n l y  a f a c t o r  o f  10 b e l o w  t h o s e  c o n s i d e r e d  here .  
A s t a t i s t i ca l  m e c h a n i c a l  t r e a t m e n t  o f  a p r o c e s s  
o f  t h i s  t y p e  h a s  a l r e a d y  b e e n  a p p l i e d  b y  F i s h e r  
[27] to  t h e  p r o b l e m  o f  v o i d  n u c l e a t i o n  in  t h e  
l i q u i d  s ta te ,  a p r o c e s s  w h i c h  is a l so  c o n c e r n e d  
w i t h  v o i d s  h a v i n g  d i a m e t e r  o f  1 to  5 n m ,  
a l t h o u g h  t h e  p r o b l e m  o f  v i scous  fo rces  (yield  
s t resses)  was  e x c l u d e d  in  t h i s  case.  
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